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A summary is given of techniques and results for calculating light scatter-
g in anisotropic crystals valid for arbitrary directions of the incident beam,

the ‘scattered beam and the crystal surface normal relative to the crystal axes. '/ \

A dyadic Green’s function that distinguishes ray and propagation directions
leads 10 a scattering efficiency inside the crystal that involves the Gaussian cur-
vature of the surface of wave normals. After taking account of the solid angle
expansion, and the source volume demagnification at the crystal surface, a
scattering formula is given suitable for comparison with experiments done ou!-
side the crystal. Application is made to Brillouin and Raman scattering.

I. INTRODUCTION

The availability of laser sources has led to a great upsurge in light scattering experiments
in recent years. Many experiments have been performed on crystals of low symmetry and
large optical anisotropy while a few experiments -2 have used light scatlering o measure quan-
titatively the nonlinear polarization causing the scattering. Such numerical measurements re-
quire a theory which (1) accounts correctly for the noncollinearity of the ray vector and the
wavevector that results from the optical anisotropy and (2) relates the nonlinear polarization to
measuring instrument parameters which are outside the crystal. Previous theories? have often
mishandled the first requirement and have always ignored the second.

The purpose of our study of the theory of light scattering, of which we present a sum-
mary here, has been to remedy these deficiencies of previous theories. To remedy the first
deficiency resulting from optical anisotropy we have based our theory on a Green's function
solution of the electric field wave equmion.4~5 This technique is appropriate because the
scattering volume is typically very small compared to the size of the crystal under study when
laser sources are used. Because even the crystal surface is in the far field, an asymptotic
evaluation of the Green's function inside the crystal is adequate. Our first - and incorrect -
evaluation® used a stationary phase integration over two variables followed by a residue in-
tegration over the third variable. The appealing but nevertheless incorrect result was what
would have been calculated for an isotropic medium with the subsequent replacement of the
isotropic refractive index by the one appropriate to the correct ray direction in the crystal.
This repiacement procedure has been used by others.® Our second - and correct - evaluation 5.7
follows that of Kogelnik® and Kogelnik and Motz? who used it on a magnetoionic media prob-
jlem. Their work was bascd on a stationary phase technique of Lighthill'% in which the residue
integration was performed first and the stationary phase method was applied second. The
correct asymplotically evaluated Green's function in an anisotropic crystal 5.7 is presented in
Sec. Il. This procedure takes proper account of the noncollinearity of the ray and propagation
directions in an anisotropic crystal. In Sec. Il the Green’s function solution is used to find an
expression for the scattered power inside the crystal. The expression differs in several ways
from the best previous treatment of Brillouin scattering in anisotropic media by Motulevich.!!
One difference is the appearance of the Gaussian curvature K of the surface w (k) =w in our
formula for the scattered power inside the crystal. Motulevich’s treatment was not based on a
Green's function approach but rather on Ginzburg's'? Hamiltonian approach using an aniso-
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tropic Coulomb gauge.

In Secs. 1V and V we present the remedy to the second deficiency of previous theories,
that is, to relating the scattered power inside the crystal to quantities characterizing the detector
outside the crystal. In Sec. 1V the sohd angle inside the crystal is related o the expanded solid
angle outside the crystal. The formulas presented are completely general in applying to any
orientation of the crystal axes, the scattered ray, and the surface normal. In Sec. V the length
of the scatteriiig volume along the incident beam is related to the corresponding demagnified
length as seen outside the crystal by a field stop of the detection optics. The demagnification
formula is also completely general in applying to any orientatuen of the crystal axes, the scat-
tered ray, and the surface normal. The width of the scattering volume (the unscattered beam)
when laser sources are used is typically much less than the width of the field stop of the detec-
tion optics and so does not enter the formulas explicitly. The solid angle expansion and source
volume demagnification expressions are then combined with the scattered power formula of
Sec. 111 1o produce in Sec. VII a scattered power formula applying to measurements made out-
side the crystal.

The scattered power formulas of Sces. HI and VII are formulated in terms of an arbitrary
mechanism of light scattering. In Sec. VI the power formula is specialized to two important
mechanisms, Brillouin scattering™'* (from acoustic phonons) and Raman scattering '* (from
optic phonons). The final formulas are completely general yet compact and convenient.

I1. INSIDE GREEN'S FUNCTION
The wave equation for the electric field E (rYexp ( —iws) in an anisotropic dielectric gen-
erated by the nonlinear polarization P M(r')exp ( —iwr) at the single frequency w is

2 2 pM
Ix(PxE) - L 5te) B =2 F .1
i s €,
It has the Green's function solution 4
E(rw) = [ Gr—r) - PM (e )dre ~/e, (22)
where
e e ey (ik - R) ]
GR) = J BRR R 'f;(‘,k'i . (2.3)
alkn) @
alkw) = (Jo)? (k21 —kk] - X (w), (2.4)

and ¥ (w) is the frequency dependent dielectric tensor.
We have previously given’ an asymptoiuc cvaluation of Eq. (2.3) valid for AR >> 1.
With a slight change of notation. the asvmptotic dvadic Green's function can be written

h

2 S
" y p e 1
GR) = ly‘ ) . —= p¥(R) (2.5)
( & Qe

3
[.2 €OS "0

where e® is the unit electric field vector associated with a given mode & (e g extraordinary)

whose ray direction t is parallel to the direction of observation

t =R/R, (2.6)

and 6% is_the angle between the ray vector t and the wavevector k% associated with the above
ray direction. The scalar Green's function becomes
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S () = oo SEPURS-RY
g?R) =/ AR ; 2.7)
where
. cosd?® :
i — (2.8)

ktb, /Kd:
and K is the Gaussian curvature of the (k) surface at k%, Equation (2.7) has been shown’
1o agree precisely, in the uniaxial case, with the Green’s function obtained without asymptotic

~ approximations. This Green's function disagrees by the factor /® with the intuitive notion that
for a given direction of observation one may use the Green's function for an isotropic medium .

with the index of refraction appropriate to direction k®.

I1I. SCATTERED POWER INSIDE THE CRYSTAL

If Egs. (2.2), (2.5), (2.7) and (2.8) are used to calculate the electric field and if the
corresponding magnetic field, H = (VxE)/ (iwu, ), is also found, then the Poynting vector
for a given mode ¢ is found to be .
A VA L

: 3.1

32mlc (cosd®)?
where n? is the index of refraction appropriate to wavevector k% and

s¢ =

c®=e? J PM (r)exp(—ik® r) dr. 3.2)
R
The ratio of the scattered power inside the crystal,
3 b r
: pxa = |8 r2dr, (33)
(where d " is a solid angle of rays in r space) 1o the incident power,
P = 418"} = Ao |E") Tosd" (3.4)
may be expressed as
\‘C?ll .
—=— = RVSIQO], . (3.5)
IJmC /A x

ns

Here V3 is the scattering volume accepted by the detector, A4, the cross-sectional area of the in-
cident beam inside the crystal and R, the scattering efficiency (the scattered power per unit in-
cident power, per unit solid angle, per unit path length), is given by

4
R =l n® J
c) 8mlunfcosdbeosd? (k®)2K®
The nonlinear phenomena that give rise o the scattering are included in the quantity
" 2
e? J PM(r) o % Ty
;‘\'
J = ’ 3.7

(3.6)

2¢? IE']Z )

One striking way that the cxpréssion. Eq. (3.6), for the scattering efliciency differs from previ-
ous expressions is by its dependence on the Gaussian curvature K® of the ¢ branch of the
w (k) = w surface.

ibicona il ) otsndes i ol an i,
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IV. SOLID ANGLE-EXPANSION

The ratio of the solid angles subtended by the rays of a beam inside and outside a crystal
can be factored as

dﬂJ\ dﬂi:\ dﬂilr: (41) 3
dQg, dn-,é, dQ oy,

The first factor describes the ratio of the solid angles in ray vector space and wavevector space
and is independent of the existence of a crystal surface. The second factor, describing the
change in wavevector solid angles, is completely determined by Snell’s law.

Since dQ}, is readily computed in terms of the area of a patch d4* of the w (k) surface,
see Fig. 2, and dﬂm is related 10 the same area by Gauss’ thecrema egregium, see Fig. 3, we ob-
tain our previously quoted result

dQ[dQk = K®(k?)2/cosd® . 4.2)

mn
Across the surface of a crystal (nominally in the 3 or z direction) Snell’s law guaraniees
the continuity of the transverse components of the propagauon vector and, hence, of dk; dk,.
Since dk, dk, is simply related to the patch area dAX, see Fig. 4, and hence to the solid angle
dQ K see Fig. 2, Snell's law lcads to the relation’ : :

ot ¢ ,
" c0sd ® cosa ' (4.3)
d Qo (n®)? cosp
where B is the angle of arrival of the ray inside the crystal to the surface normal, 8¢ is the an-

gle between ray and wavevectors, as before, and a is the angle between the departure ray out-
side the crystal and the surface normal.

The product of Egs. (4.2) and (4.3) yields the desired solid angle expansion

dQL/dQg, = (w/c)2K®cosa/cosB . 4.4
A slight rearrangement of this equation suggests that
d Q) "cosB/K o 4.5)

is an invariant for the pass'ge of a beam from one material to another, aresult we have recent-
ly proved quite generally.'> Equation (4.4) is a specnal case of this invariance in which the
3 second medium is a vacuum with K., = (dw)?.

V. SOURCE VOLUME DEMAGNIFICATION

When the laser beam, scattered ray, surface normal, and departure ray outside the crystal
are all in one plane, it is possible to derive the length /g along the laser beam in the crystal
from which radiation is admitted by a detector field stop of length /p. As seen from Fig. §,
these lengths are related by

AN e

sinds 4 Ip i

cosp cosp  cosa
where # is the scattering angle.
When the rays mentioned above are not all coplanar, Eq. (5.1) must be replaced by

L
S _ _Ncosg (5.2)

4 Ip sinf gcosa

i

where Nis the noncoplanarity correction, !¢
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= |/ (cos¢ cosep' — cosf sing sing’) . (5.3)

Here ¢’ is the angle of tilt between the plane defined by the unscatiered laser beam and the
normal 1o the input surface and the plane defined by the scattered ray and exit surface normal;
¢ is the angle of tilt between the latter plane and the departure plane defined by the normal to
the exit surface and the scattered ray after it has left the crystal.

VI. SCATTERED POWER OUTSIDE THE CRYSTAL
To convert Eq. (3.5) to a power scattering formula outside the crystal, we use

Y L it
Phs = P T b

where T°" and TX' are entrance and exit transmission factors. If we note that ¥5/4 = I,
Egs. (4.4) and (5.2) can be combined to yield

Nipd Q PK®
I dQ], = l ] £ 6.3)
smf)s
where we have written dQ ” for d €, 1o remind us ll;al “s is the detector solid angle. A de-
14,15,16

lailed derivation of (his result has been given elsewhere.
If Egs. (6.1), (6.2) and (6.3) are combined with Eq. (3.5), we obtain

Pt Rrepyeaa Ot [, 17
= - — 6.4)
])(;"‘; sinflg
If Eq. (3.6) is used for the scattering efficiency, we obtain
NipdQ P 1 Texil
D hrily il | 6.5)

pseat 4
out _|w
C

I)IHL

out

sinflg 87 2n%ncosd Peosd?

Equation (6.5) incorporates all the geometric optics of the crystal surface. The mechanism of
the scattering is contained in J, whose evaluation will be discussed in the next section.

VII. APPLICATION TO LIGHT SCATTERING

To apply our final scattering equation, Eq. (6.5), to Brillouin, Raman, or some other
scatlering mechanism, it is necessary to evaluate J, of Eq. (3.7), whlch involves the nonlinear
optical properties of the scattering medium. Since the vofume V is large compared' to all
relevant wavelengths, it is permissible to take the limit as VS approaches infinity. The
Weiner-Khinchin theorem!” applied to spatial variables rather than the time then permits Eq.
(3.7) 10 be rewritlen as an aulocorrelation,

e? o2 J exp (—ik®r) < PMO)*PM (r) >

2¢2 |[E¥ (r)]? ’ o
where the limits are infinite.
With the understanding

E” (r)) = %[E"(r) gt E“(r)‘c"""l : (1.2)

PM (rr) = —;—[PN’- 2 il o e (r)‘c""”'l ; (13)

where w, is the input or laser frequency and wp is the Brillouin (or Raman) scattered frequen-
Cy, we can wrile
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PN (r0) =€, xg (01) Ef (r,0) (7.4)

where the "susceptibility" x,, is space and time dependent because it is induced by the pho-
non field in Brillouin or Raman scattering. Equation (7.1) can then be simplified to

J = %J exp [—i(k®—k")-r] < N*(0,0) N (r0) > dar (7.5)
where .
N (r1) = e? x, (r.0) e} (7.6)

and we have used the plane-wave character exp (ik?-r) of the unscattered wave E? (r).
If one is concerned with line shape, Eq. (7.5) can be decomposed by

L

J= [ J@) do/2m 1.7
0
where
Jw) = -%—JJ exp lilw—w; )l exp [=i(k® —k")-r] <N®¥(0,0) N (r,)) > dr di, (1.8)

and only the positive frequency components of exp (—iw, 1) N®" (r,1) are included so that
J(w) vanishes for o < 0.

Brillouin Scattering

The first application of our modified Green's function, Eq. (2.7), with surface corrections
was made in connection with a detailed study of Brillouin scattering in calcite. Because the
formulas in this paper give a clear factorization of our Brillouin scattering formula! into intrin-
sic and geometric components, we indicale here the evaluation of J based on Eq. (7.5). To be
consistent with our definition ! of the photoelastic susceptibility as a relation between. the posi-
tive frequency components of P, Ef and 4, , (the displacement gradient), we must write

Xab = 2xahal Ued (7.9)

The averages, < u,; (0,0) “g.d (r,t) >, can be evaluated by using the expansion of u,. in
terms of normal coordinates, !

il

3 : \
S S qE S, [ GO
200 w(q) ”[" alg.r) + e a’(qn) | . (7.10)

ulrs) =3

q

where ¢ = k" is the acoustic phonon propagation vector, p is the crystal density and Q is its

volume so that'p Q) = MN = mass per unit cell x number of cells. The unit displacement vec-

tor b is characteristic of the type of mode (e.g. transverse), and the sum over q also implies a
sum over types of modes. The mode amplitudes in the quantum mechanical case obey

< a'(qn) alqy) > =ndlqq). (7.11D)
< alq) a'lq) > =G+ 1)8qq) (7.12)

where n is the actual phonon excitation number that reduces to
= ' (1.13)

exp [hw (q)/kT] —1
in the thermal equilibrium case. Averages of the type, Eq. (7.12), contribute to Stokes scatter-
ing, whereas those of type, Eq. (7.11), contribute to anti-Stokes scattering. Because we usually

have Mw<<k7, both Stokes and anti-Stokes scattering have an intensity proportional
n= kT/hw. If we combine Eqs. (7.5) and (7.9)-(7.13), we obtain
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j=El G, 6= b of xyu bty 0 (.14)
pvji |
where a, = ¢,/ |q| = k/!/ |k | is a unit vector in the direction of phonon propagation and
vy = wk)/kA ' (7.15)

is the sound velocity.

Equation (6.5) for the Stokes (or anti-Stokes) power scattering by a single type of acoustic
mode can be rewritten as

o [ ] p a0’ TN TN kTG 116)
pitc sinflg 8w 2 n® n® coss® cosdpv?
where G of Eq. (7.14) can also be expressed in terms of the Pockels tensor, p;;, by means of
= (1/4) (1% n")* (cos5® cosd?)? F, (7.17)
F=|d® d pi by q |2, ' (7.18)

Here d” and d® are unit electric displacement veclors of the input and scattered beams, and w
is the Brillouin scattered frequency w?. Equation (7.16) was used in the analysis of our exper-
imental results 19 except for the noncoplanarity factor, N, which was not needed then since all
experiments were conducted in a symmetry plane.

Raman Scattering

A detailed analysis of Raman scattering by polaritons using the fluctuation-dissipation ap-
proach of Barker and Loudon® has been given.!4 To evaluate Eq. (7.8) for J(w), needed to ob-
tain the line shape in Raman scattering, we express the nonlinear susceptibility defined in Eq.
(7.4) in the usual way,

; (1) = 22 Al wh () + 2By E (o), (7.19)

as an ionic contribution associated wuh the displacement w* of mode u plus an electromc con-
tribution proportional to the electric field E(r,/). The factors of 2 assure conformity with
definitions in our previous work. 4 Because field and displacement are correlated in polariton
motion, it was simpler to evaluate the correlations with the help of the fluctuation-dissipation
theorem. 46 If Ty represems the response of < B> 1o a unit force at frequency w applied to
A, Eq. (7.8) yields 20

Jw + ol) =4nn(w) ef ¢ ef ef Im[J;, ) (7.20)
where

Jiap = 2 (A)* Ay T o+ By Buse Tyr + X (A "By T, + X By Agy T,,r (121)
s v

ab

=X ()" gf B*w) + By| T
In

[E/’ah l/‘ B"(w) + Babr

+2(AF) Al B (w) + 3 (4f) "B (w) . (122)
I

The second form, Eq. (7.22), has used the equations of motion to express all response func-
tions in terms of the field-field response, i.e. the response of the electric field to a unit applied
external polarization, as

B
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T(A' = E</Pk.xl = (o —l)(/\/En ¥ q
e? of % &
= 2 255 (o) )7 - . (7.23)
d=|2 €. COS CK/w = PR o v
0 €,s klw) s ‘
The first two terms in Eq. (7.23) represent the transverse modes while the third term
represents the longitudinal mode.
' The mode w# will generally obey an equation of the form 20
| ~
3 mt [(@h)? — w? = iwy (w) | wt = g* E, (7.24)
where m* is the effective mass, o# the cffective (angular) frequency, y* (w) the effective fre- ;
quency dependent damping constant and ¢* is the ¢ component of the effective charge. The i
. . ~ « . . . 1
} response of w* 1o°a unit applied force, needed in Eq. (7.22), is given by :
=il
B (w) ={m" [(0")? — w? — iw y* (w) ] : (7.25)

We may combine Egs. (7.20) — (7.25) 10 obtain J(w + ol). If J(w + o) is inserted
in place of Jin Eq. (6.5), the result, in view of Eq. (7.7), is the ratio of the Raman scattered
power per unit frequency interval 1o the incident power, both computed outside the crystal.
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FIGURE CAPTIONS

FIG. 1. A typical experimental setup for a Raman scattering experiment which displays the
expansion of the solid angle on emerging from the crystal. For a narrow laser
beam, the source volume VS = Alg from which scattered light is accepted is limited
by the input beam area 4 and a length /g determined by the field stop.

FIG. 2. The solid angle dQ* associated with a patch of area d4¥ = dudv on the surface
w (k) =w of free-wave k vectors is given by d QK =d4* cosd/k?, where d4¥ coss is
the component of the area d4* normal to k, since dA* is normal to t or Ve (k).

FIG. 3. Gauss’s bump theorem relates the area d4 = dudv of an element of surface to the
area d )" on the surface of a unit sphere subtended by the unit normals to dudv
that have been shifted in a parallel manner until their origins coincide at O, the
sphere center. The solid angle d Q)" = &) dp where dd = du/p,, is the angle AUD
and dp = dv/p, is the angle AVB where p, and p, are the principal radii of curva-
ture. Thus dQ’ = K dA* where K = (p, p, )~ is the Gaussian curvature and
dAR = dudyis the area of the patch on the o (k) surface.

FIG. 4. The patch d4* = dudv on the surfice o (k) = w of Fig. 3 is plotied in a k| ky.k3
coordinate system in which the three-direction is along the direction n of a unit
normal to the surface of the crystal. The projection of d4* onto the 1-2 plane
yields dk, dk, = dA* cosp because 2 is the angle between the normal t to the
patch (the ray direction) and the normal n to the surface.

FIG. 5. Demagnification corrections when the arrival ray, departure ray, and surface normal
are all in one plane. The detecior field stop (see Fig. 1) is represented in image
space by the knife edges, which accept a dimension /;, perpendicular 1o the beam.
The portion /g of the laser beam accepted is determined by the geometrical condi-
tions shown, independent of the oricntation of the virtual image
Ly s /_S-Sinl?S/COSB = lfcosB = Ip/cosa.

This manuscript was produced on a computer driven phototypesetier using thz
UNIX operating system developed at Beli Laboratories.
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